Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs
نویسندگان
چکیده
منابع مشابه
Microstructural and mechanical differences between digested collagen-fibrin co-gels and pure collagen and fibrin gels.
Collagen and fibrin are important extracellular matrix (ECM) components in the body, providing structural integrity to various tissues. These biopolymers are also common scaffolds used in tissue engineering. This study investigated how co-gelation of collagen and fibrin affected the properties of each individual protein network. Collagen-fibrin co-gels were cast and subsequently digested using ...
متن کاملStrong tough gels for 3D tissue constructs
The mechanical characteristics of ionic-covalent entanglement hydrogels consisting of combinations of the biopolymers gellan gum and kappa-carrageenan, and the synthetic polymers polyacrylamide and an epoxy amine were investigated. Compression testing showed that these gels exhibited "double network" behavior, i.e. strong tough gels.
متن کاملChick tendon fibroblast transcriptome and shape depend on whether the cell has made its own collagen matrix
Collagen- and fibrin-based gels are extensively used to study cell behaviour. However, 2D-3D and collagen-fibrin comparisons of gene expression, cell shape and mechanotransduction, with an in vivo reference, have not been reported. Here we compared chick tendon fibroblasts (CTFs) at three stages of embryonic development with CTFs cultured in collagen- or fibrin-based tissue engineered construct...
متن کاملEffect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels.
This work examines how mechanical signals affect the barrier function and stability of engineered human microvessels in microfluidic type I collagen gels. Constructs that were exposed to chronic low flow displayed high permeabilities to bovine serum albumin and 10 kDa dextran, numerous focal leaks, low size selectivity, and short lifespan of less than one week. Higher flows promoted barrier fun...
متن کاملNeurite growth in 3D collagen gels with gradients of mechanical properties.
We have designed and developed a microfluidic system to study the response of cells to controlled gradients of mechanical stiffness in 3D collagen gels. An 'H'-shaped, source-sink network was filled with a type I collagen solution, which self-assembled into a fibrillar gel. A 1D gradient of genipin--a natural crosslinker that also causes collagen to fluoresce upon crosslinking--was generated in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tissue Engineering Part A
سال: 2015
ISSN: 1937-3341,1937-335X
DOI: 10.1089/ten.tea.2013.0768